Livscykelanalys och optimering av isoleringstjocklek för moderna byggnader : - med fokus på kv Limnologen i Växjö

by Johansson, Martin; Kanellos, Konstantin

Abstract (Summary)
The aim with this report is to show how an increase of the thickness of insulating in a house influences the costs and the energy consumption for the insulation in a life cycle perspective and for the usage stage of the house. An optimization of the insulation on an ongoing construction project in Växjö, Limnologen has been carried out in the study. Total energy consumption for the insulation’s life cycle has been taken from earlier accomplished life cycle assessments (LCA). The house's heat need has been calculated on the basis of information from blueprints and contacts with persons in connection to Limnologen. An equation has been formulated in order to find a theoretical optimum for the insulating thickness regarding total energy consumption, carbondioxide and economy. The result of the optimization for total energy consumption shows that optimum lies at the the double thickness for ceilings and foundation, and triple for the walls. For carbondioxide and the economy the result is more depending on the house's heating source. District heating with biomass fuel is more environmentally friendly and economic today compared with fossil fuel. It means that houses that are oil heated should be insulated considerably more. In this study a compilation of some factors have been made, such as energy, carbondioxide and economy which makes it easier to compare them. Insulating to the calculated optimum is not relevant because the optimum is a theoretical value and does not take into consideration structure solutions and other problems that can arise. On the other hand the optimization curve shows that the profit increases rapidly at the first centimetres of additional insulation and if the structure is not affected markedly this addition would be profitable to carry out. The conclusion is that the buildings raised at Limnologen are well insulated with the presumptions of today.
Bibliographical Information:


School:Växjö universitet

School Location:Sweden

Source Type:Master's Thesis

Keywords:isolation optimering life cycle assesment energy carbon dioxide economy


Date of Publication:08/23/2007

© 2009 All Rights Reserved.