Limit theorems for generalizations of GUE random matrices

by Bender, Martin

Abstract (Summary)
This thesis consists of two papers devoted to the asymptotics of random matrix ensembles and measure valued stochastic processes which can be considered as generalizations of the Gaussian unitary ensemble (GUE) of Hermitian matrices H=A+A†, where the entries of A are independent identically distributed (iid) centered complex Gaussian random variables.In the first paper, a system of interacting diffusing particles on the real line is studied; special cases include the eigenvalue dynamics of matrix-valued Ornstein-Uhlenbeck processes (Dyson's Brownian motion). It is known that the empirical measure process converges weakly to a deterministic measure-valued function and that the appropriately rescaled fluctuations around this limit converge weakly to a Gaussian distribution-valued process. For a large class of analytic test functions, explicit formulae are derived for the mean and covariance functionals of this fluctuation process.The second paper concerns a family of random matrix ensembles interpolating between the GUE and the Ginibre ensemble of n x n matrices with iid centered complex Gaussian entries. The asymptotic spectral distribution in these models is uniform in an ellipse in the complex plane, which collapses to an interval of the real line as the degree of non-Hermiticity diminishes. Scaling limit theorems are proven for the eigenvalue point process at the rightmost edge of the spectrum, and it is shown that a non-trivial transition occurs between Poisson and Airy point process statistics when the ratio of the axes of the supporting ellipse is of order n -1/3.
Bibliographical Information:


School:Kungliga Tekniska högskolan

School Location:Sweden

Source Type:Doctoral Dissertation

Keywords:MATHEMATICS; Random matrices; Central limit theorem; Dyson's Brownian motion; Interacting diffusion; Point process; Non-Hermitian; Scaling limit


Date of Publication:01/01/2008

© 2009 All Rights Reserved.