# Large Eddy Simulation of Mixed Convection in a Vertical Slot and Geometrical Statistics of Wall-Bounded Thermal Flow

In LES, the effect of SGS scales is represented by SGS models. A novel dynamic nonlinear model (DNM) for SGS stress is tested using isothermal channel flow at Reynolds number 395. The kinetic energy dissipation and geometrical characteristics of the resolved scale and SGS scale with respect to the DNM are investigated. In general, the DNM is reliable and has relatively realistic geometrical properties in comparison with the conventional dynamic model in the present study. In contrast to a pure advecting velocity field, a scalar (temperature) field displays very different characteristics. The modelling of SGS heat flux has not been as extensively studied as that of SGS stress partly due to the complexity of the scalar transport. In this dissertation, LES for a turbulent combined forced and natural convection is studied. The DNM model and a nonlinear dynamic tensor diffusivity model (DTDM-HF) are applied for the SGS stress and heat flux, respectively. The combined effect of the nonlinear models is compared to that of linear models. Notable differences between the nonlinear and linear SGS models are observed at the subgrid-scale level. At the resolved scale, the difference is smaller but relatively more distinguishable in terms of quantities related to the temperature field.

Finally, the geometrical properties of the resolved velocity and temperature fields of the thermal flow are investigated based on the LES prediction. Some universal geometrical patterns have been reproduced, e.g. the positively skewed resolved enstrophy generation and the alignment between the vorticity and vortex stretching vectors. The present research demonstrates that LES is an effective tool for the study of the geometrical properties of a turbulent flow at the resolved-scales. The wall imposed anisotropy on the flow structures and orientation of the SGS heat flux vector are also specifically examined. In contrast to the dynamic eddy diffusivity model, the DTDM-HF successfully predicts the near-wall physics and demonstrates a non-alignment pattern between the SGS heat flux and temperature gradient vector.

Advisor:Evitts, Richard W.; Lien, Fue-Sang; Torvi, David A.; Bugg, James D.; Bergstrom, Don J.; Wu, Fang X.

School:University of Saskatchewan

School Location:Canada - Saskatchewan

Source Type:Master's Thesis

Keywords:large eddy simulation buoyant flow turbulence geometrical statistics sgs modelling scalar

ISBN:

Date of Publication:03/10/2008