Details

Knotting Statistics After a Local Strand Passage in Unknotted Self-Avoiding Polygons in Z^3

by Szafron, Michael Lorne

Abstract (Summary)
We study here a model for a strand passage in a ring polymer about a randomly chosen location at which two strands of the polymer have been brought gcloseh together. The model is based on ¦-SAPs, which are unknotted self-avoiding polygons in Z^3 that contain a fixed structure ¦ that forces two segments of the polygon to be close together. To study this model, the Composite Markov Chain Monte Carlo (CMCMC) algorithm, referred to as the CMC ¦-BFACF algorithm, that I developed and proved to be ergodic for unknotted ¦-SAPs in my M. Sc. Thesis, is used. Ten simulations (each consisting of 9.6~10^10 time steps) of the CMC ¦-BFACF algorithm are performed and the results from a statistical analysis of the simulated data are presented. To this end, a new maximum likelihood method, based on previous work of Berretti and Sokal, is developed for obtaining maximum likelihood estimates of the growth constants and critical exponents associated respectively with the numbers of unknotted (2n)-edge ¦-SAPs, unknotted (2n)-edge successful-strand-passage ¦-SAPs, unknotted (2n)-edge failed-strand-passage ¦-SAPs, and (2n)-edge after-strand-passage-knot-type-K unknotted successful-strand-passage ¦-SAPs. The maximum likelihood estimates are consistent with the result (proved here) that the growth constants are all equal, and provide evidence that the associated critical exponents are all equal.

We then investigate the question gGiven that a successful local strand passage occurs at a random location in a (2n)-edge knot-type K ¦-SAP, with what probability will the ¦-SAP have knot-type Kf after the strand passage?h. To this end, the CMCMC data is used to obtain estimates for the probability of knotting given a (2n)-edge successful-strand-passage ¦-SAP and the probability of an after-strand-passage polygon having knot-type K given a (2n)-edge successful-strand-passage ¦-SAP. The computed estimates numerically support the unproven conjecture that these probabilities, in the n¨ limit, go to a value lying strictly between 0 and 1. We further prove here that the rate of approach to each of these limits (should the limits exist) is less than exponential.

We conclude with a study of whether or not there is a difference in the gsizeh of an unknotted successful-strand-passage ¦-SAP whose after-strand-passage knot-type is K when compared to the gsizeh of a ¦-SAP whose knot-type does not change after strand passage. The two measures of gsizeh used are the expected lengths of, and the expected mean-square radius of gyration of, subsets of ¦-SAPs. How these two measures of gsizeh behave as a function of a polygonfs length and its after-strand-passage knot-type is investigated.

Bibliographical Information:

Advisor:Soteros, C.; Martin, J. R.; Millett, K.; Bunt, R.; Laverty, W.; Srinivasan, R.

School:University of Saskatchewan

School Location:Canada - Saskatchewan

Source Type:Master's Thesis

Keywords:monte carlo simulation composite markov chain maximum likelihood estimati knotting transition probabilities

ISBN:

Date of Publication:04/15/2009

© 2009 OpenThesis.org. All Rights Reserved.