Iterative model-free controller tuning

by Solari, Gabriel

Abstract (Summary)
Despite the vast amount of delivered theoretical results, regarding the topic of controller design, more than 90% of the controllers used in industry (petro-chemical, pulp and paper, steel, mining, etc) are of PID type (P, PI, PII, PD). This shows the importance of progressing in the elaboration of methods that consider restricted complexity controllers for practical applications, and that are computationally simple. Iterative Feedback Tuning (IFT) stands out as a new solution that takes into account both constraints. It belongs to the family of model-free controller tuning methods. It was developed at Cesame in the nineties and, since then, many real applications of IFT have been reported. This algorithm minimizes a cost function by means of a stochastic gradient descent scheme. In spite of the fact that the method has had an unexpected success in the tuning of real processes, a number of issues had not been fully covered yet. This thesis focuses on two aspects of this set of uncovered theoretical points: the convergence rate of the algorithm and a robust estimation of its gradient. Optimal prefilters, left as a degree of freedom for the user in the first formulation of IFT, are computed at each experiment. Their application allows a reduction in the covariance of the gradient estimate. Depending on what particular aspect the user is interested in improving, one optimal prefilter is selected. Monte-Carlo simulations have shown an enhancement with regards to a constant prefilter. A flexible arm set-up mounted in our robotics laboratory is used as a test bed to compare a model-based controller design algorithm with a model-free controller tuning method. The comparison is performed with some specifications defined beforehand. The same set-up plus a couple of air-jets serves as a tester for our theoretical results, when the rejection of a perturbation is the ultimate objective. Both cases have confirmed the predicted good behaviour offered by IFT.
Bibliographical Information:


School:Université catholique de Louvain

School Location:Belgium

Source Type:Master's Thesis

Keywords:ift stochastic methods model free controller design iterative feedback tuning


Date of Publication:08/08/2005

© 2009 All Rights Reserved.