Details

Investigating the Functional Response of a Subsurface Biofilm Community to Xenobiotic Stress

by Rhodes, Rachelle Renee

Abstract (Summary)
ABSTRACT

Biologically-mediated subsurface remediation by biofilm communities is a poorly understood process that is spatially and temporally dynamic. Two microbial responses, catabolism and the stress response glutathione-gated potassium efflux (GGKE), to benzene, pentachlorophenol (PCP), or Cd exposure were studied in up-flow sand columns to examine the contribution of each response to the overall functional response of a subsurface biofilm. Benzene was catabolized in the aerobic zone, and did not activate the GGKE response, and exhibited the highest biomass concentrations of all columns. PCP was not catabolized during this study, but was found to elicit two responses, oxidative phosphorylation uncoupling and GGKE, that appeared to be concentration dependent. Oxidative uncoupling was the controlling metabolic response up to 10 mg/L PCP, while the GGKE stress response was activated near 20 mg/L PCP. PCP column biomass did not show long-term biomass detachment, although immediate detachment occurred during initial GGKE activation. Cd column biomass activated the GGKE response as perturbing Cd concentrations increased. Extracellular polymeric substance (EPS)-Cd complexation was a possible detoxification mechanism, as biomass concentrations did not decrease with increasing Cd concentration, and increased as Cd concentrations decreased. Results of this study suggested that the increased exposure of electrophilic contaminants to sand column biomass did not cause biomass detachment.

Bibliographical Information:

Advisor:Nancy G. Love; Madeline Schreiber; John T. Novak

School:Virginia Polytechnic Institute and State University

School Location:USA - Virginia

Source Type:Master's Thesis

Keywords:environmental engineering

ISBN:

Date of Publication:07/21/2004

© 2009 OpenThesis.org. All Rights Reserved.