Internal Resonances in Vibration Isolators and Their Control Using Passive and Hybrid Dynamic Vibration Absorbers

by Du, Yu

Abstract (Summary)
Conventional isolation models deal with massless isolators, which tend to overestimate the isolator performance because they neglect the internal resonances (IRs) due to the inertia of the isolator. Previous researches on the IR problem is not adequate because they only discussed this problem in terms of vibration based on single degree-of-freedom (SDOF) models. These studies did not reveal the importance of the IRs, especially from the perspective of the noise radiation. This dissertation is novel compared to previous studies in the following ways: (a) a three-DOF (3DOF) model, which better represents practical vibration systems, is employed to investigate the importance of the IRs; (b) the IR problem is studied considering both vibration and noise radiation; and (c) passive and hybrid control approaches using dynamic vibration absorbers (DVAs) to suppress the IRs are investigated and their potential demonstrated. The 3DOF analytical model consists of a rigid primary mass connected to a flexible foundation through three isolators. To include the IRs, the isolator is modeled as a continuous rod with longitudinal motion. The force transmissibility through each isolator and the radiated sound power of the foundation are two criteria used to show the effects and significance of the IRs on isolator performance. Passive and hybrid DVAs embedded in the isolator are investigated to suppress the IRs. In the passive approach, two DVAs are implemented and their parameters are selected so that the IRs can be effectively attenuated without significantly degrading the isolator performance at some other frequencies that are also of interest. It is demonstrated that the passive DVA enhanced isolator performs much better than the conventional isolator in the high frequency range where the IRs occur. The isolator performance is further enhanced by inserting an active force pair between the two passive DVA masses, forming the hybrid control approach. The effectiveness and the practical potential of the hybrid system are demonstrated using a feedforward control algorithm. It is shown that this hybrid control approach not only is able to maintain the performance of the passive approach, but also significantly improve the isolator performance at low frequencies.
Bibliographical Information:

Advisor:Ricardo A. Burdisso; Efstratios Nikolaidis; Alfred L. Wicks; Daniel J. Inman; Donald J. Leo

School:Virginia Polytechnic Institute and State University

School Location:USA - Virginia

Source Type:Master's Thesis

Keywords:mechanical engineering


Date of Publication:05/06/2003

© 2009 All Rights Reserved.