Details

Improvement of monte carlo algorithms and intermolecular potencials for the modelling of alkanois, ether thiophenes and aromatics

by Pérez Pellitero, Javier

Abstract (Summary)
Durante la última década y paralelamente al incremento de la velocidad de computación, las técnicas de simulación molecular se han erigido como una importante herramienta para la predicción de propiedades físicas de sistemas de interés industrial. Estas propiedades resultan esenciales en las industrias química y petroquímica a la hora de diseñar, optimizar, simular o controlar procesos. El actual coste moderado de computadoras potentes hace que la simulación molecular se convierta en una excelente opción para proporcionar predicciones de dichas propiedades. En particular, la capacidad predictiva de estas técnicas resulta muy importante cuando en los sistemas de interés toman parte compuestos tóxicos o condiciones extremas de temperatura o presión debido a la dificultad que entraña la experimentación a dichas condiciones. La simulación molecular proporciona una alternativa a los modelos termofísicos utilizados habitualmente en la industria como es el caso de las ecuaciones de estado, modelos de coeficientes de actividad o teorías de estados correspondientes, que resultan inadecuados al intentar reproducir propiedades complejas de fluidos como es el caso de las de fluidos que presentan enlaces de hidrógeno, polímeros, etc. En particular, los métodos de Monte Carlo (MC) constituyen, junto a la dinámica molecular, una de las técnicas de simulación molecular más adecuadas para el cálculo de propiedades termofísicas. Aunque, por contra del caso de la dinámica molecular, los métodos de Monte Carlo no proporcionan información acerca del proceso molecular o las trayectorias moleculares, éstos se centran en el estudio de propiedades de equilibrio y constituyen una herramienta, en general, más eficiente para el cálculo del equilibrio de fases o la consideración de sistemas que presenten elevados tiempos de relajación debido a su bajos coeficientes de difusión y altas viscosidades. Los objetivos de esta tesis se centran en el desarrollo y la mejora tanto de algoritmos de simulación como de potenciales intermoleculares, factor considerado clave para el desarrollo de las técnicas de simulación de Monte Carlo. En particular, en cuanto a los algoritmos de simulación, la localización de puntos críticos de una manera precisa ha constituido un problema para los métodos habitualmente utilizados en el cálculo de equlibrio de fases, como es el método del colectivo de GIBBS. La aparición de fuertes fluctuaciones de densidad en la región crítica hace imposible obtener datos de simulación en dicha región, debido al hecho de que las simulaciones son llevadas a cabo en una caja de simulación de longitud finita que es superada por la longitud de correlación. Con el fin de proporcionar una ruta adecuada para la localización de puntos críticos tanto de componentes puros como mezclas binarias, la primera parte de esta tesis está dedicada al desarrollo y aplicación de métodos adecuados que permitan superar las dificultades encontradas en el caso de los métodos convencionales. Con este fin se combinan estudios de escalado del tamaño de sitema con técnicas de "Histogram Reweighting" (HR). La aplicación de estos métodos se ha mostrado recientemente como mucho mejor fundamentada y precisa para el cálculo de puntos críticos de sistemas sencillos como es el caso del fluido de LennardJones (LJ). En esta tesis, estas técnicas han sido combinadas con el objetivo de extender su aplicación a mezclas reales de interés industrial. Previamente a su aplicación a dichas mezclas reales, el fluido de LennardJones, capaz de reproducir el comportamiento de fluidos sencillos como es el caso de argón o metano, ha sido tomado como referencia en un paso preliminar. A partir de simulaciones realizadas en el colectivo gran canónico y recombinadas mediante la mencionada técnica de "Histogram Reweighting" se han obtenido los diagramas de fases tanto de fluidos puros como de mezclas binarias. A su vez se han localizado con una gran precisión los puntos críticos de dichos sistemas mediante las técnicas de escalado del tamaño de sistema. Con el fin de extender la aplicación de dichas técnicas a sistemas multicomponente, se han introducido modificaciones a los métodos de HR evitando la construcción de histogramas y el consecuente uso de recursos de memoria. Además, se ha introducido una metodología alternativa, conocida como el cálculo del cumulante de cuarto orden o parametro de Binder, con el fin de hacer más directa la localización del punto crítico. En particular, se proponen dos posibilidades, en primer lugar la intersección del parámetro de Binder para dos tamaños de sistema diferentes, o la intersección del parámetro de Binder con el valor conocido de la correspondiente clase de universalidad combinado con estudios de escalado. Por otro lado, y en un segundo frente, la segunda parte de esta tesis está dedicada al desarrollo de potenciales intermoleculares capaces de describir las energías inter e intramoleculares de las moléculas involucradas en las simulaciones. En la última década se han desarrolldo diferentes modelos de potenciales para una gran variedad de compuestos. Uno de los más comunmente utilizados para representar hidrocarburos y otras moléculas flexibles es el de átomos unidos, donde cada grupo químico es representado por un potencial del tipo de LennardJones. El uso de este tipo de potencial resulta en una significativa disminución del tiempo de cálculo cuando se compara con modelos que consideran la presencia explícita de la totalidad de los átomos. En particular, el trabajo realizado en esta tesis se centra en el desarrollo de
This document abstract is also available in .
Bibliographical Information:

Advisor:Mackie, Allan

School:Universitat Rovira i Virgili

School Location:Spain

Source Type:Master's Thesis

Keywords:departament d enginyeria química

ISBN:

Date of Publication:10/05/2007

© 2009 OpenThesis.org. All Rights Reserved.