Details

Identification and characterization of peptide-like MHC-ligand exchange catalyst as immune response enhancer

by Gupta, Shashank

Abstract (Summary)
MHC class II molecules present antigenic peptides on the cell surface for the surveillance by CD4+ T cells. To ensure that these ligands accurately reflect the content of the intracellular MHC loading compartment, a complex processing pathway has evolved that delivers only stable peptide/MHC complexes to the surface. As additional safeguard mechanism, MHC molecules quickly acquire a ‘non-receptive’ state once they have lost their ligand. This study shows that amino acid side chains of short peptides can bypass these safety mechanisms by triggering the reversible ligand-exchange. The catalytic activity of dipeptides such as Tyr-Arg (YR) is stereo-specific and could be enhanced by modifications addressing the conserved H-bond network near the P1 pocket of the MHC molecule. It enhanced both antigen-loading and ligand-release and strictly correlated with reported anchor preferences of P1, the specific target site for the catalytic side chain of the dipeptide. The effect was evident also in CD4+ T cell assays, where the allele-selective influence of the dipeptides translated into increased sensitivities of the antigen-specific immune response. The hypothesis that occupation of P1 prevents the ‘closure’ of the ‘empty’ peptide binding site into the ‘non-receptive’ state was further supported by molecular dynamic calculations. During antigen processing and presentation P1 may therefore function as important ‘sensor’ for peptide-load. Spectroscopic studies using ANS dye (8-aninilino-1-napthalenesulfonic acid) and intrinsic tryptophan fluorescence data, confirm the postulate by providing direct evidence for the conformational transitions. Moreover conformation specific antibodies previously described to be specific for ‘empty’ MHC could be shown to be a ‘probe’ for ‘receptive conformation’. As potent risk factors short peptides may be involved in the induction of autoimmune diseases. It could be shown here that they could enhance the loading of gluten derived antigen on celiac disease linked-HLA-DQ2 allele. At least in vitro the effect could enhance gluten specific CD4+ T cell response on T cell clones obtained from celiac disease patients. Thus, on one hand short peptides might work as ‘MHC loading enhancer’ (MLE) in the precipitation of inflammatory-‘autoimmune’ disorder, on the other hand they might be used as drug like vaccine ‘additive’ in various therapeutic settings.
This document abstract is also available in German.
Bibliographical Information:

Advisor:

School:Humboldt-Universität zu Berlin

School Location:Germany

Source Type:Master's Thesis

Keywords:MHC loading enhancer (MLE) dipeptiden immune response enhancers dipeptides WF 9910 WD 5275

ISBN:

Date of Publication:04/23/2009

© 2009 OpenThesis.org. All Rights Reserved.