Details

Gold and Silver Nanoparticles: Characterization of their Interesting Optical Properties and the Mechanism of their Photochemical Formation

by Eustis, Susie

Abstract (Summary)
A new method is developed referred to as Gold Nanorod Optical Modeling Equations (GNOME) for determining the average aspect ratio of gold nanorods in solution. In this method, the observed inhomogeneously broadened optical spectrum is fitted to a number of calculated homogeneously broadened spectra with different aspect ratios having different contributions. From this method, the average aspect ratio is determined. This is a more accurate than the presently used method of TEM. The surface plasmon enhanced fluorescence spectra of gold nanorods are calculated as a function of the aspect ratio and compared to experimental spectra. In this calculation, the inclusion of both the aspect ratio distribution calculated from the GNOME method as well as the incorporation of the intrinsic fluorescence of bulk gold are found necessary to model the enhanced fluorescence spectrum of gold nanorods using previously published equations. The enhanced spectrum decreases rapidly as the aspect ratio increases and the surface plasmon band shift away from the gold interband absorption. Photochemical methods are used to synthesize silver nanoparticles on silica surfaces and gold nanoparticles in solution. The formation silver nanoparticles utilizes benzophenone as a photosensitizing agent to initiate the reaction. The effects of the light source and irradiation time are investigated. The presence of different forms of silica are investigated in the formation of metal nanoparticles. This method produced silver nanoparticles on silica that can be in the form of film or powder that are useful in heterogeneous catalysis. Direct photochemical methods are applied to generate gold nanoparticles from chloroauoroic acid in ethylene glycol in the presence of polyvinylpyrrolidone as a capping material. A detailed mechanism of the formation of the gold nanoparticle is determined. This is done by following the kinetics of formation of the gold nanoparticles after irradiation under different conditions. The disproportionation of the gold ions as well as their reduction by ethylene glycol is found to be important in the formation of the nanoparticles. Photochemical synthesis provides room temperature techniques to generate metal nanoparticles in a variety of environments.
Bibliographical Information:

Advisor:Whetten, Robert; Wang, Z.L.; Perry, Joe; El-Sayed, Mostafa A.; Orlando, Thomas

School:Georgia Institute of Technology

School Location:USA - Georgia

Source Type:Master's Thesis

Keywords:chemistry and biochemistry

ISBN:

Date of Publication:05/30/2006

© 2009 OpenThesis.org. All Rights Reserved.