Details

Galois representations and tame Galois realizations

by Arias de Reyna Domínguez, Sara

Abstract (Summary)
RESUMEN: Esta tesis se desarrolla en torno al Problema Inverso de la Teoría de Galois sobre el cuerpo de los números racionales. Este problema, que fue considerado por primera vez por D. Hilbert, es un problema abierto. En 1994, B. Birch plantea la siguiente variante de este problema, conocida como problema inverso moderado de la teoría de Galois. Dado un grupo finito G, ¿existe una extensión de Galois K/Q, moderadamente ramificada, con grupo de Galois G? En esta tesis abordamos este problema mediante el estudio de las representaciones de Galois asociadas a objetos aritmético-geométricos, concretamente a curvas elípticas, formas modulares y variedades abelianas. Encontramos condiciones explícitas que garantizan que para todo primo, la imagen del grupo de inercia salvaje es trivial. La memoria está dividida en dos partes. El objetivo de la primera parte es la obtención de realizaciones moderadas de grupos lineales 2-dimensionales sobre un cuerpo finito como grupos de Galois sobre Q. Dado un número primo l, demostramos que existen infinitas curvas elípticas semiestables E/Q con buena reducción supersingular en l. La representación de Galois asociada a los puntos de l-torsión de E da lugar a una realización de GL(2, F_l) como grupo de Galois de una extensión de Q moderadamente ramificada. A continuación se consideran las representaciones de Galois asociadas a formas modulares. Obtenemos realizaciones de Galois moderadas para algunos grupos de la familia PSL(2, F_(l^2)). El objetivo de la segunda parte es la obtención de realizaciones moderadas de los grupos lineales de la familia GSp(4, F_l). Estudiamos la acción de la inercia sobre los puntos de l-torsión del grupo formal asociado a una variedad abeliana, y obtenemos un resultado general que nos permite controlar la acción de la inercia salvaje. Aplicamos este resultado al caso de superficies abelianas. Concretamente, consideramos las Jacobianas de curvas de género 2 bielípticas supersingulares, construidas de forma conveniente para controlar la imagen de la representación asociada. Demostramos que, dado un número primo l mayor que 3, existen infinitas curvas C de género 2 tales que la representación de Galois asociada a los puntos de l-torsión de la Jacobiana de C proporciona una realización de GSp(4, F_l) como grupo de Galois de una extensión moderadamente ramificada de Q.
This document abstract is also available in English.
Document Full Text
The full text for this document is available in English.
Bibliographical Information:

Advisor:Vila Oliva, Nuria

School:Universitat de Barcelona

School Location:Spain

Source Type:Master's Thesis

Keywords:algebra i geometria

ISBN:

Date of Publication:06/04/2009

© 2009 OpenThesis.org. All Rights Reserved.