Fourier analysis on spaces generated by s.n function

by Yang, Hui-min

Abstract (Summary)
The Besov class $B_{pq}^s$ is defined by ${ f : { 2^{|n|s}||W_n*f||_p } _{ninmathbb{Z}}in ell^q(mathbb{Z}) }$. When $s=1$, $p=q $, we know if $f in B_p$ if and only if $int_mathbb{D} |f^{(n)}(z)|^p(1-|z|^2)^{2pn-2}dv(z) <+infty$. It is shown in [5] that $int_{mathbb{D}}|f^{'}(z)|^q K(z,z)^{1-q}dv(z)= O(L(b(e^{-(q-p)^{-1}})))$ if $f in B_{L,p}$. In this paper we will show that $f in B_{L,p}$ if and only if $sum_{n=0}^{infty}2^{nq}||W_n*f||_p^q = O(L(b(e^{-(q-p)^{-1}})))$.
Bibliographical Information:

Advisor:none; none; Ngai-Ching Wong; Mark C. Ho

School:National Sun Yat-Sen University

School Location:China - Taiwan

Source Type:Master's Thesis

Keywords:fourier analysis symmetric norming function besov spaces


Date of Publication:06/20/2006

© 2009 All Rights Reserved.