Details

Flip-Chip Ball Grid Array Lead Free Solder Joint under Reliability Test

by Liu, Lee-Cheng

Abstract (Summary)
ABSTRACT In package, it¡¦s easy to have defects in the solder joint, for the request of environment protection, lead-free solder research is one of the most important topics now. In soldering, the adhesion, diffusion barrier, and wettability of the interface between UBM and a lead-free solder, and the caused IMC structure that are important elements to influence long-term reliability tests. The thesis is aimed to investigate the combination of pure tin/Al-NiV-Cu UBM/STD Au substrate under reliability tests. The samples are bare dies in which the combination is pure tin/ Al-NiV-Cu UBM and packages of is pure tin/Al-NiV-Cu UBM/STD Au substrate. The goals are to realize the mechanical properties under multiple reflows and long term HTST tests with different temperatures and the operational life. We also uses SEM to observe the growth of IMC and the failure modes that help us to realize the connection between failure modes and IMC. The results of experiment can be concluded as follows. In a bare die, 260¢Jmultiple reflows test causes delamination between IMC and die, but doesn¡¦t affect the mechanical properties of it, and HTST test lowers the bump shear strength of it. In package, multiple reflows test and HTST test lower the mechanical properties significantly, the result also means that the adhesion between bump and die will drop significantly as tests go on. In HTOL test with the conditions of 150¢J and 320mA, the average stable service time of the package is 892 hours, and the average ultimate service time of the package is 1,053 hours, most probable failure site is in R1 joint.
Bibliographical Information:

Advisor:Shyue-Jian Wu; Huang-Kuang Kung; Ming-Hwa R. Jen; Jenq-Dah Wu

School:National Sun Yat-Sen University

School Location:China - Taiwan

Source Type:Master's Thesis

Keywords:reliability test lead free solder

ISBN:

Date of Publication:07/01/2003

© 2009 OpenThesis.org. All Rights Reserved.