Details

Evolution Study from Sol to SnO2 films Using Inorganic Precursors

by Chen, Sing-Chung

Abstract (Summary)
Abstract Aqueous solution containing tin chloride as precusor was traditionally added with NH3(aq) to promote hydrolysis and hence condensation. This results in a particulate sol which possesses little viscosity and the aggregation of precusor particles makes the subsequcently spin-coated thin film very rough in the surface and poorly-adhered with the substrate. One objective of this work is to improve the film quality by refluxing the sol to reduce precursor aggregation, enhance hydrolysis and promote HCl(g) evaporation. Experimtntal results show that, after refluxing the sol with DI-water or methanol as solvent, one obtains better films when basic sol (NH3(aq) added) and SnCl2 precursor is used instead of acidic sol (HCl(aq)added) and SnCl4 precursor. Moreover, to further reduce the effect of Cl¡Ð ion in aggregation and increase viscosity, ethylene glycol was used as solvent and two-stage heating-stirring of the sol in 80 oC and 130 oC ~150 oC was carried out to promote generation of H2O(g) and HCl(g). The evaporation of H2O(g) and HCl(g) enhances the polymerization of precursor and increase the viscosity of the sol. The aggregation caused by Cl¡Ð ions is thus reduced due to the steric effect present in the polymerical sol. XRD, SEM, FT-IR , TGA and DSC were used to examine the evolution from sol to films. FT-IR results show that absorbtion peaks of the xerogel appear at 636 cm-1(O-Sn-O) and 500 cm-1 (Sn-O). XRD results of the calcined (4 hr) powders show that rutile (SnO2) crystallization starts at 200 oC for that derived from the SnCl2-containing sol while powder derived from the SnCl4-containing sol starts crystallization at 250 oC. However, grain growth is faster in powder derived from SnCl4-containing sol as their XRD peaks become sharper than that corresponding to SnCl2 precursor as calcination temperature is raised. Based on the examination of the evolution process, it is concluded that SnCl2 polymerizes in ethylene glycol as a one dimensional chain while SnCl4 forming a 3-D network after polymerizing in ethylene glycol.
Bibliographical Information:

Advisor:Hong-Yang Lu; Tzu-Chien Hsu; Bing-Hwait Hwang

School:National Sun Yat-Sen University

School Location:China - Taiwan

Source Type:Master's Thesis

Keywords:thin film ethylene glycol sno2 sncl2 sncl4 ft ir sol gel

ISBN:

Date of Publication:07/31/2003

© 2009 OpenThesis.org. All Rights Reserved.