Details

Estimadores corrigidos para modelos não-lineares generalizados superdispersados

by Santos Previdelli, Isolde Terezinha

Abstract (Summary)
A teoria dos modelos lineares e não-lineares da família exponencial vem encontrando espaço cada vez maior entre pesquisadores que querem explorá-la tanto na aplicação quanto na melhoria dos métodos usuais e alternativos. Uma classe mais ampla é a dos modelos lineares e não-lineares generalizados superdispersados, nos quais se modelam os parâmetros da média e dispersão e que, além disso, incorpora a dispersão na função de variância. Essa classe tem sido utilizada de forma expressiva principalmente para dados onde haja superdispersão, isto é, onde a variância real seja maior que a predita pelo modelo. Os estimadores dos parâmetros desses modelos los têm vieses de O(n-1 ) e costumam ser ignorados. Entretanto, para amostras de tamanho moderado a pequeno, esses vieses podem ser significativos, podendo atingir o mesmo valor do respectivo erro-padrão. Dentro desse contexto, é plausível fazer melhorias nos estimadores em áreas de atuação onde nem sempre é possível obter grandes amostras, como, por exemplo, na produção industrial, no controle de qualidade, em segmentos de produção de animais, nas engenharias, na farmacologia, na saúde, entre outras. Neste estudo foram obtidas expressões para o viés de O(n-1 ) para corrigir os estimadores de máxima verossimilhança dos parâmetros dos modelos não-lineares generalizados superdispersados.Para validar essa correção, foram executadas simulações de Monte Carlo e aplicações de dados advindos da área de engenharia da produção. Os resultados mostraram que estimativas de O(n-2 ) devem ser utilizadas nos modelos, principalmente em amostras de tamanho pequeno a moderado, podendo-se evidenciar que, quanto menor o tamanho da amostra, maiora necessidade de se fazerem correções. Em termos práticos, isto é, do ponto de vista econômico e operacional, é altamente positivo, pois o fato de se trabalhar com modelos de maior precisão traz como resultado produtos mais uniformes e, consequentemente, redução significativa de custos.
Bibliographical Information:

Advisor:Gauss Moutinho Cordeiro; Dora Maria Orth; Linda Lee Ho; Lúcia Pereira Barroso; Dalton Francisco de Andrade; Pedro Alberto Barbetta; Robert Wayne Samohyl

School:Universidade Federal de Santa Catarina

School Location:Brazil

Source Type:Master's Thesis

Keywords:modelos nao lineares estatística engenharia de producao

ISBN:

Date of Publication:06/02/2006

© 2009 OpenThesis.org. All Rights Reserved.