Environmental occurrence and behaviour of the flame retardant decabromodiphenyl ethane

by Ricklund, Niklas, PhD

Abstract (Summary)
The environmental occurrence and behaviour of the brominated flame retardant (BFR) decabromodiphenyl ethane (dbdpe) has only been studied to a limited extent. It is structurally similar to decabromodiphenyl ether (decaBDE), which makes it conceivable that dbdpe may also become an environmental contaminant of concern.A method for environmental analysis and comparative assessments of dbdpe and decaBDE was developed. Both BFRs were studied in: a mass balance of the Henriksdal WWTP in Stockholm (Paper I); an international survey of sewage sludge (Paper II); sediment along a transect from Henriksdal WWTP to the outer archipelago of Stockholm and from isolated Swedish lakes (Paper III); and a benthic food web from the Scheldt estuary (Paper IV).Dbdpe was found in sludge from every country surveyed, indicating that it may be a worldwide concern. The WWTP mass balance showed that virtually all of the BFRs were transferred from wastewater to sludge. A small fraction was emitted via the effluent, confirming emissions to the aquatic environment. In the marine sediment, the BFR levels close to the WWTP outfall were high. They decreased along the transect to low levels in the outer archipelago. The study of lake sediment showed a widespread presence of dbdpe in the Swedish environment and provided evidence that it originates from long range atmospheric transport. In the food web, dbdpe did bioaccumulate to a small extent which was similar to decaBDE. The transfer of the BFRs from sediment to benthic invertebrates was low, while transfer from prey to predator was higher. Biodilution was observed rather than biomagnification.This work suggests that the persistence, the susceptibility to long range atmospheric transport, and the potential for bioaccumulation are similar for dbdpe and the regulated decaBDE that it is replacing. Thus, there is a risk that a problematic environmental pollutant is being replaced with a chemical that is equally problematic.
Bibliographical Information:


School:Stockholms universitet

School Location:Sweden

Source Type:Doctoral Dissertation

Keywords:NATURAL SCIENCES; Chemistry; Environmental chemistry; Persistent organic compounds; brominated flame retardant; decabromodiphenyl ether; waste water treatment plant; mass balance; sludge; long range transport; atmospheric deposition; bioaccumulation; bioavailability; tillämpad miljövetenskap; Applied Environmental Science


Date of Publication:01/01/2010

© 2009 All Rights Reserved.