Entwicklung und klinische Anwendung von Vakzinen unter Verwendung von DNA des Tumorantigens Muzin (MUC1)

by Pecher, Gabriele

Abstract (Summary)
The recent development in oncological and hematological basic sciences has opened new therapeutic strategies. The transfer of molecular biology- and tumorimmunological research into clinical application and the development of different new immuno- and gene-therapeutical methods using DNA of the human tumor antigen mucin are the main focus of the work. Presented are results reaching from vaccination of chimpanzees to a clinical phase I / II study in patients: The human tumor antigen mucin, encoded by the gene MUC1, is a large glycoprotein which is underglycosylated on pancreatic-, breast- and ovarian cancer cells and can be recognized by cytotoxic T cells and monoclonal antibodies. Chimpanzees were immunized with mucin-cDNA-transfected Epstein-Barr-Virus (EBV)-immortalized autologous B cells as a vaccine inducing a cellular immune response in these animals. Moreover, human virus-free "mini-EBV-B-cell lines" expressing the tumor antigen mucin were generated providing an unlimited and safe source for antigen presenting cells to specifically stimulate and expand T cells ex vivo. As another strategy an immortalized human CD4+ T cell clone inhibiting tumor growth in mice was grown. The receptor of this mucin recognizing T cell clone was sequenced and provides the basis for a possible adoptive immunotherapy by transferring this receptor into effector cells for specific targeting. A further approach was to use a "naked" mucin-DNA-vaccine. This vaccine was able to suppress long-term tumor growth in a mouse tumor model. Finally, dendritic cells were used for vaccination. As prerequisites for a clinical application, liposomal gene transfer- and efficient cryopreservation- methods of human dendritic cells were established. A vaccine consisting of liposomal mucin gene (MUC1)-transfected autologous dendritic cells was evaluated in a clinical phase I / II trial. It could be demonstrated that this dendritic cell vaccine is feasible and safe and that immune responses can be induced even in patients with advanced diseases. The results of these studies contribute to new therapeutical strategies in oncology and hematology. DNA-based vaccines and immunotherapies could be promising tools for future oncological treatments.
This document abstract is also available in German.
Document Full Text
The full text for this document is available in German.
Bibliographical Information:


School:Humboldt-Universität zu Berlin

School Location:Germany

Source Type:Master's Thesis

Keywords:Tumorantigen DNA vaccine tumor antigen mucin


Date of Publication:07/17/2003

© 2009 All Rights Reserved.