Details

Electrochemically controlled patterning for biosensor arrays.

by Dondapati, Srujan Kumar

Abstract (Summary)
Resumen Existe una demanda creciente de dispositivos de análisis multianalito, con aplicaciones potenciales en los campos de la biomedicina y biotecnología, así como en el ámbito industrial y ambiental. Para el desarrollo de estos dispositivos resulta esencial un buen control espacial durante la etapa de inmovilización de las biomoléculas de interés; cada una de ellas debe ser depositada de forma precisa sobre la superficie del sensor (por ejemplo, un transductor amperométrico), evitando solapamientos que puedan comprometer la especificidad del sistema. El objetivo de esta tesis es desarrollar diferentes métodos de patterning para la inmovilización selectiva de biomoléculas. El primer método consiste en la electrodeposición selectiva de nanopartículas de oro biofuncionalizadas para el desarrollo de biochips. Se trata de un método de patterning controlado electroquímicamente, en el que las nanopartículas de oro se modifican en primer lugar recubriéndolas con diversos enzimas y a continuación se electrodepositan selectivamente sobre la superficie de un electrodo. Como parte de esta metodología, se prepararon nanopartículas de oro biofuncionalizadas utilizando tres estrategias diferentes: a través del enlace dativo oro-tiol, por adsorción directa o mediante interacción electrostática siguiendo la técnica layer-by-layer (capa por capa). Para la funcionalización de las nanopartículas de oro se emplearon distintas biomoléculas, como los enzimas peroxidasa de rábano (HRP), glucosa oxidasa (GOX) y albúmina de suero bovino (BSA), y finalmente oligonucleótidos modificados con moléculas fluorescentes y grupos tiol. Las nanopartículas biofuncionalizadas fueron caracterizadas mediante técnicas de espectroscopía UV-visible, microscopía electrónica de transmisión (TEM) y medida del potencial zeta. Mediante espectroscopía UV-visible se observó un pico de resonancia de plasmón característico de las nanopartículas modificadas, relacionado con la estabilidad de la preparación. La medida del potencial zeta permitió la caracterización de las nanopartículas de oro modificadas capa por capa con polímero redox y enzimas. También se estudiaron los cambios en el potencial zeta de nanopartículas modificadas con BSA a distintos valores de pH. Tras la preparación de las partículas biofuncionalizadas, se llevaron a cabo estudios fundamentales de electrodeposición de nanopartículas de oro modificadas con BSA y un polímero redox, con el fin de analizar el efecto de varios parámetros: potencial aplicado, tiempo de Resumen deposición, distancia entre los electrodos, superficie del electrodo auxiliar y pH del medio. Para estudiar el comportamiento electrocatalítico de las nanopartículas modificadas una vez electrodepositadas, se llevaron a cabo experimentos utilizando coloides de oro modificados con HRP y GOX. A continuación se empleó esta metodología para el desarrollo de biochips, utilizando dos configuraciones diferentes. En la primera, se electrodepositaron nanopartículas de oro funcionalizadas con GOX y HRP y modificadas con un polímero redox sobre la superficie de un chip de electrodos interdigitados (IDE), consiguiendo eliminar por completo las repuestas no específicas. En la segunda configuración, las partículas se modificaron con una capa adicional de polímero redox, comprobando de nuevo la ausencia total de respuestas no específicas después de la electrodeposición. Esta método de patterning es genérico y puede utilizarse para la producción de diversos biochips. El segundo método de patterning también está basado en el control electroquímico, y consiste en la modificación de los electrodos con monocapas autoensambladas electroactivas cuya funcionalidad es modulable en función del potencial aplicado. En esta metodología, la monocapa electroactiva contiene grupos acetal que pueden ser desprotegidos selectivamente mediante la aplicación de un potencial en zonas específicas de la superficie del electrodo. De esta manera quedan expuestos en la superficie grupos aldehído activos, que pueden ser fácilmente conjugados con aminas primarias presentes en las biomoléculas de interés. Los enzimas GOX y HRP se usaron como proteínas modelo para comprobar la versatilidad de esta técnica. Su aplicabilidad para la fabricación de biochips se demostró con medidas amperométricas y medidas en tiempo real mediante resonancia de plasmón de superficie combinado con electroquímica (eSPR). La tercera metodología es también un sistema de patterning controlado electroquímicamente, pero en este caso se utiliza la inmovilización del 4,4-bipiridil como base para la creación de biochips. Se sintetizaron moléculas de 4,4-bipiridil funcionalizadas con grupos carboxílicos, que fueron caracterizadas electroquímicamente y a continuación conjugadas con las biomoléculas de interés para la creación de biochips. La selectividad de estos sistemas se demostró colorimétricamente, obteniéndose niveles mínimos de respuesta inespecífica. Resumen Por último, el cuarto de los métodos de patterning desarrollados está basado en la técnica de fotolitografía. Los enzimas glucosa oxidasa y sarcosina oxidasa se depositaron selectivamente junto con un polímero redox sobre la superficie de electrodos interdigitados utilizando un proceso de lift off, consiguiendo eliminar por completo las señales cruzadas o cross-talk. Como parte de esta metodología se optimizaron varios procedimientos de inmovilización de las biomoléculas, con el fin de seleccionar la estrategia más adecuada. También se llevaron a cabo ensayos con diferentes reactivos para eliminar la adsorción inespecífica. Finalmente, el sistema optimizado fue aplicado sobre IDEs fabricados mediante fotolitografía. Los sensores de glucosa y sarcosina respondieron de forma selectiva a sus respectivos sustratos, con ausencia total de cross-talk. La presente tesis está estructurada en 7 capítulos. En el Capítulo I se exponen las bases del desarrollo de biochips, métodos de patterning con control electroquímico, otros métodos de patterning selectivo y las técnicas de fotolitografía, así como un resumen de la tesis. El Capítulo 2 y 3 describe la síntesis de coloides de oro, la modificación con biomoléculas, los estudios de estabilidad y los estudios fundamentales de electrodeposición de las nanopartículas de oro modificadas sobre la superficie de los electrodos. En el Capítulo 4 se muestra la aplicación de la electrodeposición de nanopartículas de oro biofuncionalizadas para la creación de biochips. El Capítulo 5 describe la inmovilización selectiva de biomoléculas mediante la desprotección electroquímica de monocapas autoensambladas electroactivas. En el Capítulo 6 se muestra la síntesis, caracterización e inmovilización selectiva de derivados de 4,4- bipiridil funcionalizados con HRP. El Capítulo 7 describe el patterning selectivo en la escala micrométrica de dos oxidasas sobre un chip de electrodos interdigitados mediante fotolitografía. Finalmente, el Capítulo 8 resume las conclusiones y el trabajo futuro.
This document abstract is also available in English.
Document Full Text
The full text for this document is available in English.
Bibliographical Information:

Advisor:Katakis, Ioannis

School:Universitat Rovira i Virgili

School Location:Spain

Source Type:Master's Thesis

Keywords:departament d enginyeria química

ISBN:

Date of Publication:12/14/2006

© 2009 OpenThesis.org. All Rights Reserved.