Effiziente Lösung reeller Polynomialer Gleichungssysteme

by Mbakop, Guy Merlin

Abstract (Summary)
This dissertation deals with {\em geometric algorithms} for solving real multivariate polynomial equation systems, that define a reduced regular sequence (cf. subsection $\ref{abschgeo}$). Real solving means that one has to find at least one real point in each connected component of a real compact and smooth variety $V := W \cap \R^n$. \\ The main point of this thesis is the use of a complex symbolic geometric algorithm, which is designed for an algebraically closed field and was published in the papers \cite{gh2} and \cite{gh3}. The models of computation are {\em straight--line programms} and {\em arithmetic Networks} with parameters in $\; \Q$. Let the polynomials be given by a division--free straight--line programm of size $L$. A geometric solution for the system of equations given by the regular sequence consists in a {\em primitiv element} of the ring extension associated with the system, a minimal polynomial of this primitive element and a parametrization of the coordinates. This representation has a long history going back to {\em Leopold Kronecker} \cite{kron}. The time--complexity of our algorithms turns out to be linear in $L$ and polynomial with respect to $n, d, \delta$ or $\delta '$, respectively. Here $n$ denotes the number of variables, $d$ is an upper bound of the degrees of the polynomials involved in the system, $\delta$ and $\delta '$ are geometric invariants representing the maximum of the {\em affine (geometric) degree} of the system under consideration and the affine (geometric) degree of suitable {\em polar varieties} (cf. \cite{he} for the ({\em geometric}) degree). The application of an algorithm running in the complex numbers to solve polynomial equations in the real case becomes possible by the introduction of polar varieties (cf. \cite{bank}). The polar varieties introduced for this purpose prove to be the corner--stone and the preliminary tool for the efficient use of the geometric algorithm mentioned above. An incremental algorithm is designed to find at least one real point on each connected component of the zero set defined by the input under the assumption that the given semialgebraic set $V = W \cap \R^n$ is a bounded, smooth (local) complete intersection manifold in $\R^n$. The increment of the new algorithm is the codimension of the polar varieties under consideration. The main theorems are Theorem $\ref{theorem12}$ on page $\pageref{theorem12}$ for the hypersurface case, and Theorem $\ref{theoresult}$ on page $\pageref{theoresult}$ for the complete intersection as well as the statement in the introduction of this thesis on page $\pageref{vollres}$.
This document abstract is also available in German.
Bibliographical Information:


School:Humboldt-Universität zu Berlin

School Location:Germany

Source Type:Master's Thesis

Keywords:affine (geometric) degree geometric algorithm straight--line program and arithmetic network polar variety


Date of Publication:09/24/1999

© 2009 All Rights Reserved.