Details

Effiziente Lösung reeller Polynomialer Gleichungssysteme

by Mbakop, Guy Merlin

Abstract (Summary)
Diese Arbeit beinhaltet {\it geometrische Algorithmen} zur L\"osung reeller polynomialer Gleichungssysteme mit rationalen Koeffizienten, wobei die Polynome eine reduzierte regul\"are Folge bilden (vgl. Abschnitt \ref{abschgeo}). Unter reellem L\"osen verstehen wir hier die Bestimmung eines Punktes in jeder Zusammenhangskomponente einer kompakten glatten reellen Variet\"at $V:=W \cap \R^n$.\\ Im Mittelpunkt steht die Anwendung des f\"ur den algebraisch abgeschlossenen Fall ver\"offentlichten symbolischen geometrischen Algorithmus nach \cite{gh2} und \cite{gh3}. Die Berechenungsmodelle sind {\em Straight--Line Programme} und {arithmetische Netzwerke} mit Parametern in $\; \Q$. Die Input--Polynome sind durch ein Straight--Line Programm der Gr\"o{\ss}e $L$ gegeben. Eine geometrische L\"osung des Input--Glei\-chungs\-sys\-tems besteht aus einem primitiven Element der Ringerweiterung, welche durch die Nullstellen des Systems beschrieben ist, aus einem mininalen Polynom dieses primitiven Elements, und aus den Parametrisierungen der Koordinaten. Diese Darstellung der L\"osung hat eine lange Geschichte und geht mindestens auf Leopold Kronecker \cite{kron} zur\"uck. Die Komplexit\"at des in dieser Arbeit begr\"undeten Algorithmus erweist sich als linear in $L$ und polynomial bez\"uglich $n, d, \delta$ bzw. $\delta \;'$, wobei $n$ die Anzahl der Variablen und $d$ eine Gradschranke der Polynome im System ist. Die Gr\"o{\ss}en $\delta$ und $\delta \; '$ sind geometrische Invarianten, die das Maximum der {\em Grade des Inputsystems} und geeigneter {\em polarer Variet\"aten} repr\"asentieren (bzgl. des ({\em geometrischen}) Grades vgl. \cite{he}). Die Anwendung eines Algorithmus \"uber den komplexen Zahlen auf das L\"osen von polynomialen Gleichungen im Reellen wird durch die Einf\"urung polarer Variet\"aten m\"oglich (vgl. \cite{bank}). Die polaren Variet\"aten sind das Kernst\"uck und das vorbereitende Werzeug zur effizienten Nutzung des oben erw\"ahnten geometrischen Algorithmus. Es wird ein inkrementelles Verfahren zur Auffindung reeller Punkte in jeder Zusammenhangskomponente der Nullstellenmenge des Inputsystems abgeleitet, welches einen beschr\"ankten glatten (lokalen) vollst\"andigen Durchschnitt in $\R^n$ beschreibt. Das Inkrement des Algorithmus ist die Kodimension der polaren Variet\"aten. Die Haupts\"atze sind Satz $\ref{theorem12}$ auf Seite $\pageref{theorem12}$ f\"ur den Hyperfl\"achenfall, und Satz $\ref{theoresult}$ auf Seite $\pageref{theoresult}$, sowie die Aussage in der Einf\"uhrung dieser Arbeit, Seite $\pageref{vollres}$ f\"ur den vollst\"andigen Durchschnitt.
This document abstract is also available in English.
Document Full Text
The full text for this document is available in English.
Bibliographical Information:

Advisor:

School:Humboldt-Universität zu Berlin

School Location:Germany

Source Type:Master's Thesis

Keywords:Mathematik affiner (geometrischer) Grad geometrischer Algorithmus Straight--Line Programm und arithmetisches Netzwerk polare Varietät

ISBN:

Date of Publication:09/24/1999

© 2009 OpenThesis.org. All Rights Reserved.