Details

Effekt der Bandstruktur von Cu(111)- und Cu(110)-Oberflächen auf den resonanten Ladungstransfer bei streifender Streuung

by Hecht, Thomas

Abstract (Summary)
Diese Arbeit untersucht den Einfluss der elektronischen Bandstruktur von Festkörperoberflächen auf den resonanten Ladungsaustausch zwischen Festkörpern und atomaren Projektilen. Dazu wurden diese atomaren Projektile an einkristallinen Cu(111)- und Cu(110)-Oberflächen gestreut. Die Streuung erfolgt unter streifendem Einfall, typischerweise bei Einfallswinkeln zwischen 0.5 bis zu 4 Grad zur Oberfläche bei Projektilgeschwindigkeiten von 0.05 bis zu 1.4 atomaren Einheiten. Unter diesen Bedingungen erfolgt kein Eindringen des Projektils in den Festkörper, sondern eine Reflektion des Projektils von der Oberfläche. Somit können die Ladungszustände der auslaufenden Projektile als Funktion von Projektilgeschwindigkeit und Einfallswinkel untersucht werden. Die Verteilung der Ladungszustände nach der Streuung hängt theoretischen Vorhersagen zufolge signifikant von der Bandstruktur der Festkörperoberfläche ab. Die Experimente wurden an zwei verschiedenen Cu-Oberflächen durchgeführt. Während die Cu(110)-Oberfläche gut durch das Modell des freien Elektronengases (jellium-Modell) beschrieben werden kann, ist die Cu(111)-Oberfläche durch eine Bandlücke im Bereich der Fermienergie sowie durch einen in der Bandlücke liegenden Oberflächenzustand gekennzeichnet. Um den Effekt der elektronischen Bandstruktur auf den resonanten Ladungsaustausch zwischen Festkörperoberflächen und atomaren Zuständen deutlich herauszustellen, wurden atomare Zustände, die sich energetisch in Resonanz zur Bandlücke befinden, untersucht. Insbesondere wurde der Ladungsaustausch von negativen Wasserstoff-, Fluor-, Chlor-, Sauerstoff-, Kohlenstoff- und Schwefelionen sowie der Grund- und angeregten Zustände von Lithium, Natrium und Kalium mit Cu(110)- und Cu(111)-Oberfläche experimentell untersucht. Die Neutralisation hochgeladener Ionen an einer Cu(111)-Fläche wurde stellvertretend am Beispiel von bis zu 21-fach geladenen Xenonionen studiert. Gravierende Effekte der elektronischen Bandstruktur der Cu(111)-Oberfläche wurden durch die Theorie für die Formierung negativer Wasserstoffionen vorhergesagt. Nach den Ergebnissen der WPP-Methode wird das Maximum der Abhängigkeit der H- -Ausbeute von der Parallelgeschwindigkeit bei 6% erwartet, während bei einer jellium-Oberfläche gleicher Austrittsarbeit und Fermienergie nur etwa 0.3% negativer Ionen vorhergesagt werden. Mit einer experimentell ermittelten H- -Ausbeute von maximal 1% wird ein signifikanter Einfluß der elektronischen Bandstruktur auf den Ladungsaustausch bestätigt. Der Verlauf der Geschwindigkeitsabhängigkeit der Ausbeute an negativen Ionen, insbesondere die Breite der Resonanzstruktur, deutet in Übereinstimmung mit der theoretischen Vorhersage auf eine dominante Beteiligung des Oberflächenzustandes am resonanten Ladungsaustausch hin. Die Differenz zwischen experimentellen und theoretischen Ergebnissen wird durch die Existenz eines zusätzlichen Elektronen-Verlustkanals erklärt. Die Berücksichtigung der Streuung an Festkörperelektronen führt zu einer wesentlichen Verbesserung der Übereinstimmung zwischen Experiment und Theorie. Die experimentelle Untersuchung der Neutralisation der Alkaliatome Lithium, Natrium und Kalium bestätigt einen signifikanten Einfluß der Bandlücke der Cu(111)-Oberfläche auf den resonanten Ladungsaustausch: Im Vergleich zur Vorhersage des jellium-Modells treten deutlich erhöhte Ausbeuten an neutralisierten Projektilen auf. Weiterhin finden sich in der Abhängigkeit der Neutralausbeuten von der Parallelgeschwindigkeit mehrere Maxima bzw. Schulterstrukturen, die auch von der WPP-Theorie qualitativ vorhergesagt werden. Die bei der Formierung negativer Halogenionen experimentell beobachtete Signatur der elektronischen Bandstruktur ist schwächer, als dies bei der Neutralisation von Alkaliatomen und der Formierung negativer Wasserstoffionen beobachtet werden konnte. Ein deutlicher Effekt der Bandlücke kann aber auch hier, wie auch bei der Streuung von Sauerstoff-, Kohlenstoff- und Schwefelionen, konstatiert werden. Die Untersuchung des Ladungsaustausches an der Cu(110)-Oberfläche ergab in allen Fällen eine gute Übereinstimmung mit der Vorhersage des jellium-Modells. Die in dieser Arbeit vorgestellten experimentellen Ergebnisse zeigen, daß die elektronische Bandstruktur der Cu(111)-Oberfläche den resonanten Ladungsaustausch substantiell beeinflußt. Das wurde besonders am Beispiel der Formierung negativer Wasserstoffionen und der Neutralisation von Alkaliatomen überzeugend demonstriert. Die Überzeugungskraft der experimentellen Ergebnisse wird durch die gute Übereinstimmung der an der (110)-Fläche des gleichen Metalls erzielten experimentellen Resultate mit den Vorhersagen des jellium-Modells erhöht.
This document abstract is also available in English.
Document Full Text
The full text for this document is available in English.
Bibliographical Information:

Advisor:

School:Humboldt-Universität zu Berlin

School Location:Germany

Source Type:Master's Thesis

Keywords:Physik, Astronomie Ionen-Oberflächenstreuung Kupfer Physik

ISBN:

Date of Publication:10/25/2000

© 2009 OpenThesis.org. All Rights Reserved.