Discovery and Characterization of a Novel Microtubule Associated Protein Involved in Cellulose Biosynthesis

by Rajangam, Alex Selvanayagam

Abstract (Summary)
Cell walls are a distinct feature of plants and their chemical constituents, cellulose, hemicelluloses and lignin, are economically valuable. Plant fibres rich in cellulose, which mainly resides in their cell wall, are traditionally used in making paper and textiles. The changing global economic situation and environmental concerns have imparted necessity for renewable, but at the same time value added cellulosic materials. The Department of Wood Biotechnology, KTH together with its collaborators, have established EST libraries and performed transcript profiling during wood development in poplar, a tree considered as a model for wood development. The majority of the genes upregulated during cellulose biosynthesis encode proteins with known or predictable functions, such as carbohydrate active enzymes (CAzymes). However, some of them encode proteins with unknown functions. Characterization of these genes will potentially give additional opportunities to modify fibre properties. This thesis describes the discovery and characterization of a highly upregulated gene with a previously unknown function in poplar xylem, here denoted PttMAP20. Following its early discovery by mRNA profiling, the characterization was initiated with a thorough bioinformatic analysis, and the knowledge obtained was used to devise techniques for further functional analysis. Specific antibodies were raised, affinity purified and characterized. The antibodies were used as a tool for screening recombinant expression in E. coli and for the cellular localization of the protein in plant tissues, visualized with confocal and transmission electron microscopy. A purification protocol was developed for the expressed protein, followed by biochemical characterization. Appropriate model systems were used in both in vivo and in vitro studies. Fluorescently labelled protein transiently expressed in tobacco leaves was used for localization studies and the same system was used to characterize the molecular properties of the protein. Phenotypes arising from overexpressing the PttMAP20 gene were traced in the model plant Arabidopsis. All the results obtained so far indicate that PttMAP20 is a novel microtubule associated protein that binds to a cellulose biosynthesis inhibitor, DCB (2,6-dichlorobenzonitrile) and is required during cellulose biosynthesis in secondary cell walls.
Bibliographical Information:


School:Kungliga Tekniska högskolan

School Location:Sweden

Source Type:Doctoral Dissertation

Keywords:TECHNOLOGY; Bioengineering; MAP; unknown gene; cellulose biosynthesis; Populus; microtubule; DCB


Date of Publication:01/01/2008

© 2009 All Rights Reserved.