Design, Testing, and Performance of a Hybrid Micro Vehicle - The Hopping Rotochute

by Beyer, Eric W.

Abstract (Summary)
A new hybrid micro vehicle, called the Hopping Rotochute, was developed to robustly explore environments with rough terrain while minimizing energy consumption over extended periods of time. Unlike traditional robots, the Hopping Rotochute maneuvers through complex terrain by hopping over or through impeding obstacles. A small coaxial rotor system provides the necessary lift while a movable internal mass controls the direction of travel. In addition, the low mass center and egg-like shaped body creates a means to passively reorient the vehicle to an upright attitude when in ground contact while protecting the rotating components. The design, fabrication, and testing of a radio-controlled Hopping Rotochute prototype as well as an analytical study of the flight performance are documented. The aerodynamic, mechanical, and electrical design of the prototype is outlined which were driven by the operational requirements assigned to the vehicle. The aerodynamic characteristics of the rotor system as well as the damping characteristics of the foam base are given based on experimental results using a rotor test stand and a drop test stand respectively. Experimental flight testing results using the prototype are outlined which demonstrate that all design and operational requirements are satisfied. A dynamic model associated with the Hopping Rotochute is then developed including a soft contact model which estimates the forces and moments on the vehicle during ground contact. A comparison between the vehicles motion measured using a motion capture system and the simulation results are presented to determine the validity of the experimentally-tuned dynamic model. Using this validated simulation model, key parameters such as system weight, rotor speed profile, internal mass weight and location, as well as battery capacity are varied to explore the flight performance characteristics. The sensitivity of the hopping rotochute to atmospheric winds is also investigated as well as the ability of the device to perform trajectory shaping.
Bibliographical Information:

Advisor:Costello, Mark

School:Georgia Institute of Technology

School Location:USA - Georgia

Source Type:Master's Thesis

Keywords:aerospace engineering


Date of Publication:05/04/2009

© 2009 All Rights Reserved.