Details

Der Aktivierungsmechanismus von Rhodopsin Untersuchungen zur Rolle der siebenten und achten Helix sowie des Beta-Ionon-Rings

by Fritze, Olaf

Abstract (Summary)
Rhodopsin, der Rezeptor der visuellen Kaskade, gehört zu größten Klasse A der G-Protein-koppelnden Rezeptoren (GPCRs) und gilt als Modell-Rezeptor in der GPCR-Forschung. Über 3 % des humanen Genoms kodieren für GPCRs, doch trotz der physiologischen Bedeutung dieser Proteinfamilie sind die fundamentalen Mechanismen, mit denen diese Rezeptoren extrazelluläre Signale in das Zellinnere weiterleiten noch nicht verstanden. In der vorliegenden Dissertation werden Aspekte des Aktivierungsmechanismus von Rhodopsin sowie der Kopplung und Aktivierung des G-Proteins Transduzin untersucht. Die Arbeit ist in drei Schwerpunkte unterteilt: I. Es wurde ein in GPCR’s hochkonserviertes NPxxYx(5,6)F Motiv (Aminosäuresequenz Asn-Pro-x-x-Tyr-x(5,6)-Phe) in der siebten und achten Helix charakterisiert. In diesem konservierten Motiv sind mehrere für die Ausbildung der aktiven Rezeptorkonformation wichtige Funktionen vereint: Verknüpfung zu einem Wasserstoffbrückennetzwerk, Helixflexibilität sowie die exakte Positionierung der achten Helix. Letzteres hat nicht nur bei der Rezeptoraktivierung sondern auch bei der nachfolgenden Interaktion mit dem G-Protein eine Bedeutung. II. Anhand von chimären Rezeptoren, bei denen Teile der achten Helix durch homologe Sequenzen des beta2-adrenergen Rezeptors ausgetauscht wurden, wurde die Rolle der achten Helix bei der Rezeptor-Aktivierung und Bindung des G-Proteins untersucht. Auch bei dieser Studie wurde gezeigt, dass die exakte Positionierung der achten Helix essentiell für die Interaktion mit dem G-Protein ist. Zudem wurde ein bezüglich der G-Protein-Aktivierung funktionsfähiger chimärer Rezeptor gefunden, was auf einen übergeordneten Mechanismus bei der Aktivierung von G-Proteinen durch GPCRs hindeutet. III. Die Funktion des ß-Ionon-Rings des Retinals beim Aktivierungsmechanismus von Rhodopsin wurde an einem Retinal studiert, bei welchem Teile des Retinal-Rings fehlten (azyklisches Retinal). Auch diesem azyklischen Retinal können Eigenschaften eines partiellen Agonisten zugeschrieben werden. Beim Vergleich zu Pigmenten mit dem nativen 11-cis-Retinal wurden starke Analogien bei der initialen Energieaufnahme durch die Retinal-Isomerisierung sowie bei der Weiterleitung der Lichtenergie ins Protein gefunden. Allerdings wird die Energie schlechter auf das Protein übertragen, wodurch wesentlich weniger der aktiven G-Protein bindenden Rezeptorkonformation gebildet wird. Als wichtigste Funktion des Retinal-Rings wurde die Aufrechterhaltung der aktiven Meta-II-Konformation identifiziert.
This document abstract is also available in English.
Bibliographical Information:

Advisor:

School:Humboldt-Universität zu Berlin

School Location:Germany

Source Type:Master's Thesis

Keywords:Biowissenschaften, Biologie partieller Agonist

ISBN:

Date of Publication:12/05/2006

© 2009 OpenThesis.org. All Rights Reserved.