Details

Database Server Workload Characterization in an E-commerce Environment

by Liu, Fujian

Abstract (Summary)
A typical E-commerce system that is deployed on the Internet has multiple layers that include Web users, Web servers, application servers, and a database server. As the system use and user request frequency increase, Web/application servers can be scaled up by replication. A load balancing proxy can be used to route user requests to individual machines that perform the same functionality.

To address the increasing workload while avoiding replicating the database server, various dynamic caching policies have been proposed to reduce the database workload in E-commerce systems. However, the nature of the changes seen by the database server as a result of dynamic caching remains unknown. A good understanding of this change is fundamental for tuning a database server to get better performance.

In this study, the TPC-W (a transactional Web E-commerce benchmark) workloads on a database server are characterized under two different dynamic caching mechanisms, which are generalized and implemented as query-result cache and table cache. The characterization focuses on response time, CPU computation, buffer pool references, disk I/O references, and workload classification.

This thesis combines a variety of analysis techniques: simulation, real time measurement and data mining. The experimental results in this thesis reveal some interesting effects that the dynamic caching has on the database server workload characteristics. The main observations include: (a) dynamic cache can considerably reduce the CPU usage of the database server and the number of database page references when it is heavily loaded; (b) dynamic cache can also reduce the database reference locality, but to a smaller degree than that reported in file servers. The data classification results in this thesis show that with dynamic cache, the database server sees TPC-W profiles more like on-line transaction processing workloads.

Bibliographical Information:

Advisor:Makaroff, Dwight; Klymyshyn, David M.; Jamali, Nadeem; Eager, Derek L.

School:University of Saskatchewan

School Location:Canada - Saskatchewan

Source Type:Master's Thesis

Keywords:dynamic caching tpc w profile classification oltp temporal locality

ISBN:

Date of Publication:12/19/2005

© 2009 OpenThesis.org. All Rights Reserved.