DNA-Vakzinierung mit Tyrosinhydroxylase-Impfstoffen zur aktiven Immuntherapie des Neuroblastoms

by Hübener, Nicole

Abstract (Summary)
Therapeutic vaccination against tumor antigens without induction of autoimmunity remains a major challenge in cancer immunotherapy. Here, we demonstrate for the first time effective therapeutic vaccination followed by eradication of established spontaneous neuroblastoma metastases using a tyrosine hydroxylase (TH) DNA minigene vaccine. We identified three novel mouse TH (mTH3) derived peptides with high predicted binding affinity to MHC class I H2-Kk according to prediction program syfpeithi and computer modeling of epitopes into MHC class I binding groove. Subsequently, a DNA minigene vaccine based on pCMV-F3Ub encoding for mutated ubiquitin (G76 to A76) and mTH3 was generated. Prophylactic and therapeutic efficacy of this vaccine was established following oral delivery using attenuated Salmonella typhimurium SL7207. Only mice immunized with mTH3 were free of spontaneous liver metastases. This effect was clearly dependant on ubiquitin and high affinity of the mTH epitopes to MHC class I. Specifically, we demonstrated a crucial role for minigene expression as a stable ubiquitin-Ala76 fusion peptide for vaccine efficacy. Interestingly, the unstable wild type ubiquitin-Gly76 vaccine was completely ineffective. The immune response following mTH3 DNA minigene vaccination was mediated by CD8+ T-cells as indicated by infiltration of primary tumors and TH specific cytolytic activity in vitro. Importantly, no infiltration was detectable in TH expressing adrenal medulla, indicating the absence of auto immunity. In summary, we demonstrate effective therapeutic vaccination against neuroblastoma with a novel rationally designed tyrosine hydroxylase minigene vaccine without induction of autoimmunity providing an important base line for clinical application of this strategy.
This document abstract is also available in German.
Document Full Text
The full text for this document is available in German.
Bibliographical Information:


School:Humboldt-Universität zu Berlin

School Location:Germany

Source Type:Master's Thesis

Keywords:Neuroblastom Neuroblastoma Ubiquitin ubiquitin Anti-Tumoreffekt CTLs proteasomale Degradation immunotherapy DNA vaccination anti-tumor effect proteasomal degradation


Date of Publication:09/26/2007

© 2009 All Rights Reserved.