Cooperative Diversity for Fading Channels in the Presence of Impulsive Noise

by Aldharrab, Suhail Ibrahim

Abstract (Summary)
Although there already exists a rich literature on cooperative diversity, current results are mainly restricted to the conventional assumption of additive white Gaussian noise (AWGN). AWGN model realistically represents the thermal noise at the receiver, but ignores the impulsive nature of atmospheric noise, electromagnetic interference, or man-made noise which might be dominant in many practical applications. In this thesis, we investigate the performance of cooperative communication over Rayleigh fading channels in the presence of impulsive noise modeled by Middleton Class A noise.

We consider a multi-relay network with amplify-and-forward relaying and orthogonal cooperation protocol. As for the coding across the relays, we employ either space-time coding or repetition coding. For each scheme, we assume various scenarios based on relays’ location and quantify the diversity advantages through the derivation of the pairwise error probability. Based on the minimization of a union bound on the error rate performance, we further propose optimal power allocation schemes and demonstrate significant performance gains over their counterparts with equal power allocation. We finally present an extensive Monte Carlo simulation to confirm our analytical results and corroborate on our results.

Bibliographical Information:


School:University of Waterloo

School Location:Canada - Ontario

Source Type:Master's Thesis

Keywords:cooperative diversity impulsive noise space time coding power allocation cooperation electrical and computer engineering


Date of Publication:12/01/2008

© 2009 All Rights Reserved.