Construction of a Calcium Matter-Wave Interferometer Construction of a Calcium Matter-Wave Interferometer

by Erickson, Christopher Joseph

Abstract (Summary)
I describe the construction of a calcium matter-wave interferometer. The interferometer is based on a Ramsey-Borde scheme, and uses a thermal beam of atoms excited by an optical-frequency transition in calcium. In our experiment four pi/2 pulses of light are delivered to the atoms, which split and recombine the wave functions of the atoms. Our experimental design minimizes first-order Doppler shifts, and allows for the cancellation of systematic errors including phase shifts due to rotation and acceleration. I describe the individual components of the interferometer and its assembly. The requirements for the electronics used in the experiment as well as their design and performance are described in great detail. I also give an overview of the techniques used to passively stabilize the laser and optical components. Finally, I report on the current status of the experiment as well as detail future work to be done on the apparatus.
Bibliographical Information:


School:Brigham Young University

School Location:USA - Utah

Source Type:Master's Thesis

Keywords:interferometer precision measurement metrology atomic clock stable laser low noise electronics surface mount soldering thermal beam


Date of Publication:08/15/2007

© 2009 All Rights Reserved.