Compositional Analysis of Iterated Relations: Dynamics and Computations

by Geurts, Frédéric

Abstract (Summary)
Discrete-time relational dynamical systems are mathematical models of possibly nonlinear and nondeterministic, state-based transition systems. They describe the time evolution of forests, viruses, parallel programs or cooperating agents. This thesis develops the compositional analysis of iterated relations: we study dynamical and computational properties of composed systems by combining the individual analyses of their components, simplified by abstraction techniques. We present a structural view of dynamical complexity, and a strict computational hierarchy of systems. Classical case studies are successfully analyzed: low-dimensional chaotic systems (logistic map, Smale horseshoe map, Cantor relation), high-dimensional complex systems (cellular automata), as well as formal systems (paperfoldings, Turing machines).
Bibliographical Information:


School:Université catholique de Louvain

School Location:Belgium

Source Type:Master's Thesis

Keywords:iterated relations


Date of Publication:03/22/1997

© 2009 All Rights Reserved.