Details

Clustering biological data using a hybrid approach : Composition of clusterings from different features

by Keller, Jens

Abstract (Summary)
Clustering of data is a well-researched topic in computer sciences. Many approaches have been designed for different tasks. In biology many of these approaches are hierarchical and the result is usually represented in dendrograms, e.g. phylogenetic trees. However, many non-hierarchical clustering algorithms are also well-established in biology. The approach in this thesis is based on such common algorithms. The algorithm which was implemented as part of this thesis uses a non-hierarchical graph clustering algorithm to compute a hierarchical clustering in a top-down fashion. It performs the graph clustering iteratively, with a previously computed cluster as input set. The innovation is that it focuses on another feature of the data in each step and clusters the data according to this feature. Common hierarchical approaches cluster e.g. in biology, a set of genes according to the similarity of their sequences. The clustering then reflects a partitioning of the genes according to their sequence similarity. The approach introduced in this thesis uses many features of the same objects. These features can be various, in biology for instance similarities of the sequences, of gene expression or of motif occurences in the promoter region. As part of this thesis not only the algorithm itself was implemented and evaluated, but a whole software also providing a graphical user interface. The software was implemented as a framework providing the basic functionality with the algorithm as a plug-in extending the framework. The software is meant to be extended in the future, integrating a set of algorithms and analysis tools related to the process of clustering and analysing data not necessarily related to biology.The thesis deals with topics in biology, data mining and software engineering and is divided into six chapters. The first chapter gives an introduction to the task and the biological background. It gives an overview of common clustering approaches and explains the differences between them. Chapter two shows the idea behind the new clustering approach and points out differences and similarities between it and common clustering approaches. The third chapter discusses the aspects concerning the software, including the algorithm. It illustrates the architecture and analyses the clustering algorithm. After the implementation the software was evaluated, which is described in the fourth chapter, pointing out observations made due to the use of the new algorithm. Furthermore this chapter discusses differences and similarities to related clustering algorithms and software. The thesis ends with the last two chapters, namely conclusions and suggestions for future work. Readers who are interested in repeating the experiments which were made as part of this thesis can contact the author via e-mail, to get the relevant data for the evaluation, scripts or source code.
Bibliographical Information:

Advisor:

School:Högskolan i Skövde

School Location:Sweden

Source Type:Master's Thesis

Keywords:clustering bioinformatics hybrid

ISBN:

Date of Publication:06/05/2008

© 2009 OpenThesis.org. All Rights Reserved.