Climate Variability, Timing of Nesting and Breeding Success of Tree Swallows (Tachycineta bicolor)

by Fast, Marie

Abstract (Summary)
Recent changes in climate have increased public attention and scientific evaluation of climate impacts on wild animals and plants. Variation in local weather and regional climate may affect breeding success in birds. Migratory species may be sensitive to these changes as breeding and wintering areas may experience different climate variations; some insectivorous species may be unable to alter timing of migration or laying dates and experience a mismatch between timing of nesting and peak insect availability for their nestlings. Therefore, I investigated the influence of local weather variables and regional climate on breeding performance of an insectivorous migrant songbird, the Tree Swallow (Tachycineta bicolor), and tried to examine effects of a mismatch between the timing of breeding and food availability.

I used a 14 year data set from St. Denis, Saskatchewan, Canada, 1991-2004, to evaluate correlations among local weather, wetland conditions, aerial insects and regional climate indices and their relationships with variation in clutch initiation date, clutch size, and fledging success. Swallows returned to the study site in late April each year. Annual variation in median clutch initiation date was best explained by mean minimum temperatures during 1-15 May. Larger clutches were laid in years with higher pond water levels (possibly an indication of increased insect availability) and when the Southern Oscillation Index (SOI) was positive (representing La NiƱa conditions). Fledging success was not influenced greatly by any explanatory variable; however, fledging success tended to increase in years with higher average temperatures. Individual variation in clutch initiation date was examined using path analysis. I found high correlations between initiation date and both local environmental variables and regional climate indices; earlier nesting was associated with warmer temperatures (increased local temperatures, more positive North Atlantic Oscillation Index (NAOI) values and more negative SOI values) and decreased moisture (more positive NAOI values). Two reduced data sets, including female age or insect abundance, were also examined. Clutches were initiated earlier by older females and during springs with higher abundance of aerial insects.

I applied two heating treatments to nest boxes used by pre-laying swallows and compared reproductive measures (timing of nesting, laying sequence, clutch size, egg weight and fledging success) of birds using heated boxes to those of females attending unheated control boxes. However, I was unable to directly examine the predictions of the mismatch hypothesis because nest box heating failed to advance laying dates. Furthermore, no increases in clutch size, egg weight and fledging success were detected between treatment and control nests. Although box heating increased nest temperatures an average of 6.1C (+ 0.8 SE) over controls, length of time females spent in heated boxes may have been too short to alleviate energetic constraints on egg production, or energy savings associated with box use were insufficient to supersede the influence of ambient environmental conditions that control food availability and energy expenditure of foraging swallows. My results demonstrated that local and regional climate variation strongly affected timing of nesting in swallows, likely via their effects on food supply.

Bibliographical Information:

Advisor:Wiebe, Karen L.; Machin, Karen L.; Clark, Robert G.; Chivers, Douglas P.; Brigham, R. Mark

School:University of Saskatchewan

School Location:Canada - Saskatchewan

Source Type:Master's Thesis

Keywords:local climate southern oscillation index north atlantic tree swallows laying date


Date of Publication:10/29/2007

© 2009 All Rights Reserved.