Characterization of the molecular and immunological properties of Acanthocheilonema viteae tropomyosin

by Sereda, Michal Janusz

Abstract (Summary)
This study describes the immunological properties of Acanthocheilonema viteae muscle-associated protein tropomyosin. A. viteae is a filarial parasite of jirds that resembles the important human parasite Onchocerca volvulus. Focus of experiments is on unraveling the functional properties of tropomyosin in the context of an infection and experimental vaccination. Additionally, allergenic potential of tropomyosin was investigated and the ability to induce high levels of specific IgE. A part of the study was also aimed at the development of anti-tropomyosin monoclonal antibodies (mAb). This study revealed that tropomyosin is a promising antigen for vaccines against filarial nematodes, however, effective only in a Th1 biased environment. Vaccination with protein or DNA resulted in 30% - 45% protection that was not associated with specific IgG or IgE. During infection tropomyosin is an allergen and leads to the production of high levels of specific IgE. Screening of synthetic peptide libraries showed 13 IgG and 11 IgE co-located epitopes and revealed cross-reactivity with other tropomyosins and sharing of IgE epitopes. mAb were raised against A. viteae tropomyosin and showed that tropomyosin is abundant on the cuticle of L3 and microfilariae of the parasite. Deglycosylation of the native protein showed that some epitopes were formed by the posttranslational modifications. Additionally, immunization shows that tropomyosin induces a similar pattern of cell activation and antibody production as aluminium hydroxide adjuvant, but leads to the induction of IL-10 and the increase of population of GR1+/CD11b+ cells. These cells are regarded as natural suppressors. Taken together, results show that A. viteae tropomyosin has immunomodulating properties and can be considered as a component of an efficient vaccine.
This document abstract is also available in German.
Bibliographical Information:


School:Humboldt-Universität zu Berlin

School Location:Germany

Source Type:Master's Thesis

Keywords:Filarien Tropomyosin Allergen Immunomodulation Filariae tropomyosin vaccine allergen immunomodulation


Date of Publication:02/06/2009

© 2009 All Rights Reserved.