Beste einseitige L1-Approximation mit Quasi-Blending-Funktionen / Best One-sided L1-Approximation by Quasi-Blending Functions

by Klinkhammer, John

Abstract (Summary)
Let $I^2:=[-1,1] imes[-1,1]$ be the unit square and let $U$ be a subspace of $C(I^2)$. If $f$ is a continuous function, then $u^{ast}in U$ is said to be a {it best one--sided $L^1$--approximation to f in $U$ from above} if $u^{ast}geq f$ and $|f-u^{ast}|_1leq |f-u|$ for every $u in U$ with $ugeq f$. In this paper we consider the problem of characterization of such best approximants for the case where $U$ consists of all (quasi--)blending--functions of order $(m,1)$.
Bibliographical Information:

Advisor:Prof. Dr. Hans-Bernd Knoop; Prof. Dr. Werner Haußmann

School:Universität Duisburg-Essen, Standort Essen

School Location:Germany

Source Type:Master's Thesis

Keywords:mathematik gerhard mercator universitaet


Date of Publication:04/17/2002

© 2009 All Rights Reserved.