Details

Autoimmune Regulator Deficient Mice, an Animal Model of Autoimmune Polyendocrine Syndrome Type I

by Hässler, Signe

Abstract (Summary)
Autoimmune diseases develop when the immune system fails to distinguish self from non-self or when the immune system is hypersensitive to endogenous or exogenous danger signals, or when a tissue erroneously sends a danger signal to the immune system. The education of the immune system to distinguish self from non-self is mainly carried out in the thymus and gives rise to central tolerance, whereas the ability to sense a danger or a healthy tissue constitutes peripheral tolerance. In these studies we have investigated the peripheral tolerance mechanisms controlled by the autoimmune regulator (Aire) gene in Aire deficient mice, an animal model of the monogenic disease autoimmune polyendocrine syndrome type I (APS I).Aire-/- mice displayed increased numbers of myeloid-derived antigen-presenting cells (APCs) in the spleen, lymph nodes and peritoneum as well as more blood monocytes and metallophilic macrophages in the spleen. Monocytes were also increased in the blood of APS I patients. Monocyte precursors displayed an accelerated development in the bone marrow of Aire-/- mice, and Aire-/- APCs had an altered phenotype that caused an increased immune response in several different contexts. Aire-/- splenic and lymph node dendritic cells had an increased ability to activate naive T cells, partly as a result of an upregulated expression of the costimulatory molecule VCAM-1. In Aire-/- mice increased activity of the metallophilic macrophages in the splenic marginal zone seems to be responsible both for the activated phenotype of marginal zone B cells and for the frequent development of marginal zone lymphoma with aging. In a TCR transgenic model Aire deficiency caused an increased superantigen-mediated TCR revision in the spleen, perhaps as a result of the altered phenotype of APCs in the spleen. Finally, Aire was shown to influence autoimmune disease development by a macrophage-dependent mechanism in diabetes induced with multiple low dose streptozotocin injections.These results indicate that Aire has an important function in peripheral tolerance by controlling the phenotype of myeloid-derived APCs and thereby regulating the activation of T and B lymphocytes.
Bibliographical Information:

Advisor:

School:Uppsala universitet

School Location:Sweden

Source Type:Doctoral Dissertation

Keywords:Molecular medicine; autoimmune regulator; autoimmune polyendocrine syndrome type I; peripheral tolerance; antigen presenting cells; autoimmunity; danger signal; knockout mice; Molekylärmedicin

ISBN:91-554-6701-6

Date of Publication:01/01/2006

© 2009 OpenThesis.org. All Rights Reserved.