Document Text (Pages 61-70) Back to Document

Application of ultra high hydrostatic pressure for investigating the binding of flavor compounds to ß-lactoglobulin via headspace solid phase microextraction-gas chromatography

by 1977- Hoang, Tinyee Arden, PhD


Page 61

REFERENCES
Adams JJ, Anderson BF, Norris GE, Creamer LK, Jameson GB. 2006. Structure of
bovine β-lactoglobulin (variant A) at very low ionic strength. J. Struct Biol. In Press.
Alizadeh-Pazdar N, Li-Chan ECY. 2000. Comparison of protein surface hydrophobicity
measured at various pH values using three different fluorescent probes. J. Agric. Food
Chem. 48: 328-334.
Alizadeh-Pazdar N, Li-Chan ECY, Nakai S. 2004. FT-raman spectroscopy, fluorescent
probe, and solvent accessibility study of egg and milk proteins. J. Agric. Food Chem. 52:
5277-5283.
Bhattacharjee C, Das KP. 2000. Thermal unfolding and refolding of β-lactoglobulin: an
intrinsic and extrinsic fluorescence strudy. Eur. J. Biochem. 267: 3957-3964.
Busti P, Scarpeci S, Gatti C, Delorenzi N. 2002. Use of flourescence methods to monitor
unfolding transitions in β-lactoglobulin. Food Res. Int. 35: 871-877.
Casal HL, Kohler U, Mantsch HH. 1988. Structural and conformation changes of β-
lactoglobulin B: an infrared spectroscopic study of the effect of pH and temperature.
Biochim. Biophys. Acta 957: 11-20.
Chakrabarti A. 1996. Fluorescence of spectrin-bound Prodan. Biochem. Biophys. Res.
Comm. 226: 495-497.
Cogan U, Kopelman M, Mokady S, Shinitzky M. 1976. Binding affinities of retinol and
related compounds to retinol bindin proteins. Eur. J. Biochem. 65: 71-78.
Creamer LK. 1995. Effect of sodium dodecyl sulfate and palmitic acid on the equilibrium
unfolding of bovine β-lactoglobulin. Biochem. 34: 7170-7176.
Damodaran S. 1996. Amino acids, peptides, and proteins. In: Fennema OR. Food
chemistry. Third Edition. New York: Marcel Dekker, Inc. p 321-429.
Futenberger S, Dumay E, Cheftel JC. 1995. Pressure-induced aggregation of β-
lactoglobulin in pH 7.0 buffers. Lebensm.-Wiss.-Technol. 28: 410-418.
Haskard CA, Li-Chan ECY. 1998. Hydrophobicity of bovine serum albumin and
ovalbumin determined using uncharged (PRODAN) and anionic (ANS) flourescent
probes. J. Agric. Food Chem. 46: 2671-2677.
Hiratsuki T. 1998. Prodan fluorescence reflects differences in nucleotide-induced
conformational states in the myosin head and allows continuous visualization of the
ATPase reactions. Biochem. 37: 7167-7176.
46


Page 62

Huang W, Vernon LP, Hansen LD, Bell JD. 1997. Interactions of thionin from Pyrularia
pubera with dipalmitoylphosphatidylglycerol large unilamellar vesicles. Biochem.
36(10): 2860-2866.
Iametti S, Transidico P, Bonomi F, Vecchio G, Pittia P, Rovere P, Dall'Aglio G. 1997.
Molecular modifications of β-lactoglobulin upon exposure to high pressure. J. Agric.
Food Chem. 45: 23-29.
Kusube M, Tamai N, Matsuki H, Kaneshina S. 2005. Pressure-induced phase transitions
of lipid bilayers observed by fluorescent probes prodan and laurdan. Biophys. Chem.
117(3): 199-206.
Lakowicz JR. 1983. Principles of fluorescence spectroscopy. New York: Plenum Press.
496p.
Liu X, Powers JR, Swanson BG, Hill HH, Clark S. 2005. Modification of whey protein
concentrate hydrophobicity by high hydrostatic pressure. Innov. Food Sci. Emerg.
Technol. 6(3): 310-317.
Moreno F, Cortijo M, Gonzalez-Jimenez J. 1999. The fluorescent probe Prodan
characterizes the warfarin binding site on human serum albumin. Photochem. and
Photobiol. 69(1): 8-15.
Muresan S, van der Bent A, de Wolf FA. 2001. Interaction of β-lactoglobulin with small
hydrophobic ligands as monitored by fluorometry and equilibrium dialysis: nonlinear
quenching effects related to protein-protein association. J. Agric. Food Chem. 49: 2609-
2618.
Nakai S. 1983. Structure-function relationships of food proteins with an emphasis on the
importance of protein functionality. J. Agric. Food Chem. 31: 676-683.
Petsko GA, Ringe D. 2004. Protein structure and function. London: New Science Press
Ltd. 195p.
Phillips LG, Whitehead DM, Kinsella JE. 1994. Structural and chemical properties of β-
lactoglobulin. In: Structure-function properties of food proteins. New York: Academic
Press. p 75-106.
Qin BY, Bewley MC, Creamer LK, Baker HM, Baker EN, Jameson GB. 1998. Structural
basis of the tanford transition of bovine β-lactoglobulin. Biochem. 37: 14014-14023.
Ohio State University. High pressure processing: Fact sheet for food processors.
Ramaswamy R, Balasubramaniam VM, Kaletunc G. Columbus. 1-3
Royer CA. 1995. Approaches to teaching fluorescence spectroscopy. Biophys. J. 68:
1191-1195.
47


Page 63

Swaisgood HE. 1996. Characteristics of milk. In: Fennema OR. Food chemistry. New
York: Marcel Dekker, Inc. p 841-878.
Taulier N, Chalikian TV. 2001. Characterization of pH-induced transitions of β-
lactoglobulin: ultrasonic, densimetric, and spectroscopic studies. J. Mol. Biol. 314: 873-
889.
Tedford L-A, Smith D, Schaschke CJ. 1999. High pressure processing effect on the
molecular structure of ovalbumin, lysozyme and β-lactoglobulin. Food Res. Int. 32: 101-
106.
Timasheff SN, Mescanti L, Basch JJ, Townend R. 1966. Conformational transitions of
bovine β-lactoglobulin A, B, C. J. Biol. Chem. 241: 2496-2501.
Uhrinova S, Smith MH, Jameson GB, Uhrin D, L. S, Barlow PN. 2000. Structure changes
accompanying pH-induced dissociation of the β-lactoglobulin dimer. Biochem. 39: 3565-
3574.
Vazquez ME, Blanco JB, Imperiali B. 2005. Photophysics and biological applications of
the environment-sensitive fluorophore 6-N,N-dimethylamino-2,3-naphthalimide. J. Am.
Chem. Soc. 127(4): 1300-1306.
Weber G, Farris FJ. 1979. Synthesis and spectral properties of a hydrophobic fluorescent
probe: 6-propionyl-2-(dimethylamino)-naphthalene. Biochem. 18: 3075-3078.
Yang J, Dunker AK, Powers JR, Clark S, Swanson BG. 2001. β-Lactoglobulin molten
globule induced by high pressure. J. Agric. Food Chem. 49: 3236-3243.
Yang J, Dunker AK, Powers JR, Clark S, Swanson BG. 2003. Ligand and flavor binding
functional properties of β-lactoglobulin in the molten globule state induced by high
pressure. J. Food Sci. 68: 444-452.

48


Page 64

49
Figure
1.
Intrinsic
tryptophan
emission
spectra
of
native
BLG
solutions
at
pH
3.0,
5.0,
7.0,
or
9.0.


Page 65

50

Figure
2.
Intrinsic
tryptophan
emission
spectra
of
BLG
solutions
at
pH
3.0
treated
with
UHP
at
600
MPa
for
selected
holding
times
from
0
to
32
min
(UHP0-UHP32).


Page 66

51

Figure
3.
Intrinsic
tryptophan
emission
spectra
of
BLG
solutions
at
pH
5.0
treated
with
UHP
at
600
MPa
for
selected
holding
times
from
0
to
32
min
(UHP0-UHP32).


Page 67

52
Figure
4.
Intrinsic
tryptophan
emission
spectra
of
BLG
solutions
at
pH
7.0
treated
with
UHP
at
600
MPa
for
selected
holding
times
from
0
to
32
min
(UHP0-UHP32).


Page 68

53
Figure
5.
Intrinsic
tryptophan
emission
spectra
of
BLG
solutions
at
pH
9.0
treated
with
UHP
at
600
MPa
for
selected
holding
times
from
0
to
32
min
(UHP0-UHP32).


Page 69

54

Figure
6.
Extrinsic
PRODAN
emission
spectra
of
native
BLG
solutions
at
pH
3.0-9.0.


Page 70

55
Figure
7.
Extrinsic
PRODAN
emission
spectra
of
BLG
solutions
at
pH
3.0
treated
with
UHP
at
600
MPa
for
selected
holding
times
from
0
to
32
min
(UHP0-UHP32).

© 2009 OpenThesis.org. All Rights Reserved.