Details

Analysis and identification of vortices within a turbulent channel boundary layer flow [electronic resource] /

by Maroni Veiga, Adrian Gaston

Abstract (Summary)
Vortical structures are regarded as the dominant organized patterns in wall turbulence. They play a key role in physical phenomena of practical importance such as energy and momentum transport, combustion, mixing, and noise and drag production. Considerable investigations have been performed in drag and noise phenomena studies, with a main purpose of controlling and reducing them. Various techniques to control the drag reduction have been studied for over last five decades; however, the detailed understanding of the drag reduction mechanism is still lacking. Vortices play an important role in turbulence structure. Nevertheless, the identification of vortices is still unclear, not even a universal definition of a vortex is accepted. In the present study, several vortex feature extraction schemes are implemented. The methods are applied to analyze instantaneous two-dimensional velocity fields obtained by particle tracking Velocimetry (PTV) measurements of a turbulent channel flow with and without microbubble injection within the boundary layer. Microbubble injection is one of the drag reduction techniques, first studied in early 1970s, that has undergone extensive research in past years, and the generated information has aided into drag reduction understanding. As a general rule, vortex extraction methods can be either a simple visualization scheme or more sophisticated identification tools. The Reynolds decomposition and its variants are suitable due to their capacity to mark vortices advecting at different velocities. In the case of identification techniques, which yield a scalar field calculated from either the velocity vector field or the velocity gradient tensor, both the modified swirling strength [Lambda] [subscript]ci or the [lambda]? criteria were found to be well suited for vortex identification.
Bibliographical Information:

Advisor:

School:Texas A&M International University

School Location:USA - Texas

Source Type:Master's Thesis

Keywords:major mechanical engineering vortex turbulence

ISBN:

Date of Publication:

© 2009 OpenThesis.org. All Rights Reserved.