Activity Recognition using Singular Value Decomposition

by Jolly, Vineet Kumar

Abstract (Summary)
A wearable device that accurately records a users daily activities is of substantial value. It can be used to enhance medical monitoring by maintaining a diary that lists what a person was doing and for how long. The design of a wearable system to record context such as activity recognition is influenced by a combination of variables. A flexible yet systematic approach for building a software classification environment according to a set of variables is described. The integral part of the software design is the use of a unique robust classifier that uses principal component analysis (PCA) through singular value decomposition (SVD) to perform real-time activity recognition. The thesis describes the different facets of the SVD- based approach and how the classifier inputs can be modified to better differentiate between activities. This thesis presents the design and implementation of a classification environment used to perform activity detection for a wearable e-textile system.
Bibliographical Information:

Advisor:Dr. Paul Plassmann; Dr. Mark Jones; Dr. Tom Martin

School:Virginia Polytechnic Institute and State University

School Location:USA - Virginia

Source Type:Master's Thesis

Keywords:electrical and computer engineering


Date of Publication:11/09/2006

© 2009 All Rights Reserved.