Achieving Complex Motion with Fundamental Components for Lamina Emergent Mechanisms Achieving Complex Motion with Fundamental Components for Lamina Emergent Mechanisms

by Winder, Brian Geoffrey

Abstract (Summary)
Designing mechanical products in a competitive environment can present unique challenges, and designers constantly search for innovative ways to increase efficiency. One way to save space and reduce cost is to use ortho-planar compliant mechanisms which can be made from sheets of material, or lamina emergent mechanisms (LEMs). This thesis presents principles which can be used for designing LEMs.

Pop-up paper mechanisms use topologies similar to LEMs, so it is advantageous to study their kinematics. This thesis outlines the use of planar and spherical kinematics to model commonly used pop-up paper mechanisms. A survey of common joint types is given, as well as an overview of common monolithic and layered mechanisms. In addition, it is shown that more complex mechanisms may be created by combining simple mechanisms in various ways. The principles presented are applied to the creation of new pop-up joints and mechanisms, which also may be used for lamina emergent mechanisms. Models of the paper mechanisms presented in Chapter 2 of the thesis are found in the appendix, and the reader is encouraged to print, cut out and assemble them.

One challenge associated with spherical and spatial LEM design is creating joints with the desired motion characteristics, especially where complex spatial mechanism topologies are required. Hence, in addition to a study of paper mechanisms, some important considerations for designing joints for LEMs are presented. A technique commonly used in robotics, using serial chains of revolute and prismatic joints to approximate the motion of complex joints, is presented for use in LEMs. Important considerations such as linkage configuration and mechanism prototyping are also discussed.

Another challenge in designing LEMs is creating multi-stable mechanisms with the ability to have coplanar links. A method is presented for offsetting the joint axes of a spatial compliant mechanism to introduce multi-stability. A new bistable spatial compliant linkage that uses that technique is introduced.

In the interest of facilitating LEM design, the final chapter of this thesis presents a preliminary design method. While similar to traditional methods, this method includes considerations for translating the mechanism topology into a suitable configuration for use with planar layers of material.

Bibliographical Information:


School:Brigham Young University

School Location:USA - Utah

Source Type:Master's Thesis

Keywords:paper mechanism pop up popup linkage engineering crafts origami kinematics spatial planar bistable multi stable spherical ortho compliant prbm pseudo rigid body model lamina emergent lem sheet goods layer complex joint elemental degrees of freedom modeling design serial chain parallel series fundamental components motion revolute prismatic cylindric universal half rssr rccc rsrc rtrt altmann bricard bennett goldberg 6r 4r axis angular offset v fold circular arch figure 8 single slit double tube strap knee 45 degree solid shape floating tent


Date of Publication:02/27/2008

© 2009 All Rights Reserved.